本文共 1494 字,大约阅读时间需要 4 分钟。
给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
插入一个字符
删除一个字符 替换一个字符示例 1:
输入:word1 = “horse”, word2 = “ros”
输出:3 解释: horse -> rorse (将 ‘h’ 替换为 ‘r’) rorse -> rose (删除 ‘r’) rose -> ros (删除 ‘e’) 示例 2:输入:word1 = “intention”, word2 = “execution”
输出:5 解释: intention -> inention (删除 ‘t’) inention -> enention (将 ‘i’ 替换为 ‘e’) enention -> exention (将 ‘n’ 替换为 ‘x’) exention -> exection (将 ‘n’ 替换为 ‘c’) exection -> execution (插入 ‘u’)1.递归 自顶向下(超时)(添加缓存修饰器通过)
class Solution: # 缓存修饰器 @lru_cache(None) def minDistance(self, word1: str, word2: str) -> int: if word1 == '' or word2 == '': return max(len(word1), len(word2)) if word1[-1] == word2[-1]: return self.minDistance(word1[:-1], word2[:-1]) return min(self.minDistance(word1[:-1], word2), self.minDistance(word1, word2[:-1]), self.minDistance(word1[:-1], word2[:-1])) + 1
2.动态规划 自底向上
class Solution: def minDistance(self, word1: str, word2: str) -> int: n1 = len(word1) n2 = len(word2) dp = [[0] * (n2 + 1) for _ in range(n1 + 1)] for i in range(1, n1 + 1): dp[i][0] = i for i in range(1, n2 + 1): dp[0][i] = i for i in range(1, n1 + 1): for j in range(1, n2 + 1): if word1[i - 1] == word2[j - 1]: dp[i][j] = dp[i - 1][j - 1] else: dp[i][j] = min(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1]) + 1 return dp[-1][-1]
转载地址:http://vrxoz.baihongyu.com/